Experimental Features
Chisel has a number of new features that are worth checking out. This page is an informal list of these features and projects.
Module Variants
The standard Chisel Module requires a val io = IO(...)
, the experimental package introduces several
new ways of defining Modules
- BaseModule: no contents, instantiable
- BlackBox extends BaseModule
- UserDefinedModule extends BaseModule: this module can contain Chisel RTL. No default clock or reset lines. No default IO. - User should be able to specify non-io ports, ideally multiple of them.
- ImplicitModule extends UserModule: has clock, reset, and io, essentially current Chisel Module.
- RawModule: will be the user-facing version of UserDefinedModule
- Module: type-aliases to ImplicitModule, the user-facing version of ImplicitModule.
Bundle Literals
Bundle literals can be constructed via an experimental import:
import chisel3._
import chisel3.experimental.BundleLiterals._
class MyBundle extends Bundle {
val a = UInt(8.W)
val b = Bool()
}
class Example extends RawModule {
val out = IO(Output(new MyBundle))
out := (new MyBundle).Lit(_.a -> 8.U, _.b -> true.B)
}
// Generated by CIRCT firtool-1.101.0
module Example(
output [7:0] out_a,
output out_b
);
assign out_a = 8'h8;
assign out_b = 1'h1;
endmodule
Partial specification is allowed, which results in "invalidated fields" as
described in Unconnected Wires.
Note that this can be used with RegInit
to construct partially reset registers as
described in the Cookbook.
class Example2 extends RawModule {
val out = IO(Output(new MyBundle))
out := (new MyBundle).Lit(_.b -> true.B)
}
// Generated by CIRCT firtool-1.101.0
module Example2(
output [7:0] out_a,
output out_b
);
assign out_a = 8'h0;
assign out_b = 1'h1;
endmodule
Bundle literals can also be nested arbitrarily.
class ChildBundle extends Bundle {
val foo = UInt(8.W)
}
class ParentBundle extends Bundle {
val a = UInt(8.W)
val b = new ChildBundle
}
class Example3 extends RawModule {
val out = IO(Output(new ParentBundle))
out := (new ParentBundle).Lit(_.a -> 123.U, _.b -> (new ChildBundle).Lit(_.foo -> 42.U))
}
// Generated by CIRCT firtool-1.101.0
module Example3(
output [7:0] out_a,
out_b_foo
);
assign out_a = 8'h7B;
assign out_b_foo = 8'h2A;
endmodule
Vec Literals
Vec literals are very similar to Bundle literals and can be constructed via an experimental import. They can be constructed in two forms, with type and length inferred as in:
import chisel3._
import chisel3.experimental.VecLiterals._
class VecExample1 extends Module {
val out = IO(Output(Vec(2, UInt(4.W))))
out := Vec.Lit(0xa.U, 0xbb.U)
}
// Generated by CIRCT firtool-1.101.0
module VecExample1(
input clock,
reset,
output [3:0] out_0,
out_1
);
assign out_0 = 4'hA;
assign out_1 = 4'hB;
endmodule
or explicitly as in:
import chisel3._
import chisel3.experimental.VecLiterals._
class VecExample1a extends Module {
val out = IO(Output(Vec(2, UInt(4.W))))
out := Vec(2, UInt(4.W)).Lit(0 -> 1.U, 1 -> 2.U)
}
// Generated by CIRCT firtool-1.101.0
module VecExample1a(
input clock,
reset,
output [3:0] out_0,
out_1
);
assign out_0 = 4'h1;
assign out_1 = 4'h2;
endmodule
The following examples all use the explicit form.
With the explicit form partial specification is allowed, which results in
"invalidated fields" as described in Unconnected Wires.
Note that this can be used with RegInit
to construct partially reset registers as
described in the Cookbook.
class VecExample2 extends RawModule {
val out = IO(Output(Vec(4, UInt(4.W))))
out := Vec(4, UInt(4.W)).Lit(0 -> 1.U, 3 -> 7.U)
}
// Generated by CIRCT firtool-1.101.0
module VecExample2(
output [3:0] out_0,
out_1,
out_2,
out_3
);
assign out_0 = 4'h1;
assign out_1 = 4'h0;
assign out_2 = 4'h0;
assign out_3 = 4'h7;
endmodule
Registers can be initialized from Vec literals
class VecExample3 extends Module {
val out = IO(Output(Vec(4, UInt(8.W))))
val y = RegInit(
Vec(4, UInt(8.W)).Lit(0 -> 0xAB.U(8.W), 1 -> 0xCD.U(8.W), 2 -> 0xEF.U(8.W), 3 -> 0xFF.U(8.W))
)
out := y
}
// Generated by CIRCT firtool-1.101.0
module VecExample3(
input clock,
reset,
output [7:0] out_0,
out_1,
out_2,
out_3
);
assign out_0 = 8'hAB;
assign out_1 = 8'hCD;
assign out_2 = 8'hEF;
assign out_3 = 8'hFF;
endmodule
Vec literals can also be nested arbitrarily.
class VecExample5 extends RawModule {
val out = IO(Output(Vec(2, new ChildBundle)))
out := Vec(2, new ChildBundle).Lit(
0 -> (new ChildBundle).Lit(_.foo -> 42.U),
1 -> (new ChildBundle).Lit(_.foo -> 7.U)
)
}
// Generated by CIRCT firtool-1.101.0
module VecExample5(
output [7:0] out_0_foo,
out_1_foo
);
assign out_0_foo = 8'h2A;
assign out_1_foo = 8'h7;
endmodule
Loading Memories for simulation or FPGA initialization
Inline initialization with external file
Memories can be initialized by generating inline readmemh
or readmemb
statements in the output Verilog.
The function loadMemoryFromFileInline
from chisel3.util.experimental
allows the memory to be initialized by the synthesis software from the specified file. Chisel does not validate the file contents nor its location. Both the memory initialization file and the Verilog source should be accessible for the toolchain.
import chisel3._
import chisel3.util.experimental.loadMemoryFromFileInline
class InitMemInline(memoryFile: String = "") extends Module {
val width: Int = 32
val io = IO(new Bundle {
val enable = Input(Bool())
val write = Input(Bool())
val addr = Input(UInt(10.W))
val dataIn = Input(UInt(width.W))
val dataOut = Output(UInt(width.W))
})
val mem = SyncReadMem(1024, UInt(width.W))
// Initialize memory
if (memoryFile.trim().nonEmpty) {
loadMemoryFromFileInline(mem, memoryFile)
}
io.dataOut := DontCare
when(io.enable) {
val rdwrPort = mem(io.addr)
when (io.write) { rdwrPort := io.dataIn }
.otherwise { io.dataOut := rdwrPort }
}
}
The default is to use $readmemh
(which assumes all numbers in the file are in ascii hex),
but to use ascii binary there is an optional hexOrBinary
argument which can be set to MemoryLoadFileType.Hex
or MemoryLoadFileType.Binary
. You will need to add an additional import.
SystemVerilog Bind Initialization
Chisel can also initialize memories by generating a SV bind module with readmemh
or readmemb
statements by using the function loadMemoryFromFile
from chisel3.util.experimental
.
import chisel3._
import chisel3.util.experimental.loadMemoryFromFile
class InitMemBind(val bits: Int, val size: Int, filename: String) extends Module {
val io = IO(new Bundle {
val nia = Input(UInt(bits.W))
val insn = Output(UInt(32.W))
})
val memory = Mem(size, UInt(32.W))
io.insn := memory(io.nia >> 2);
loadMemoryFromFile(memory, filename)
}
Which generates the bind module:
module BindsTo_0_Foo(
input clock,
input reset,
input [31:0] io_nia,
output [31:0] io_insn
);
initial begin
$readmemh("test.hex", Foo.memory);
end
endmodule
bind Foo BindsTo_0_Foo BindsTo_0_Foo_Inst(.*);
Notes on files
There is no simple answer to where to put the hex
or bin
file with the initial contents. It's probably best to create a resource directory somewhere and reference that through a full path or place the file beside the generated Verilog. Another option is adding the path to the memory file in the synthesis tool path. Because these files may be large, Chisel does not copy them.
Don't forget there is no decimal option, so a 10 in an input file will be 16 decimal
See: ComplexMemoryLoadingSpec.scala and LoadMemoryFromFileSpec.scala for working examples.
Aggregate memories
Aggregate memories are supported and will be lowered to a single wide UInt
. The memory loading file should be constructed to align with the final structure of the memory.