final class Connectable[+T <: Data] extends AnyRef
A data for whom members if left dangling or unassigned with not trigger an error A waived member will still be connected to if present in both producer and consumer
- Source
- Connectable.scala
- Grouped
- Alphabetic
- By Inheritance
- Connectable
- AnyRef
- Any
- by ConnectableOpExtension
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- def +(other: String): String
- Implicit
- This member is added by an implicit conversion from Connectable[T] toany2stringadd[Connectable[T]] performed by method any2stringadd in scala.Predef.
- Definition Classes
- any2stringadd
- def ->[B](y: B): (Connectable[T], B)
- Implicit
- This member is added by an implicit conversion from Connectable[T] toArrowAssoc[Connectable[T]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
- final def :#=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit
The "mono-direction connection operator", aka the "coercion operator".
The "mono-direction connection operator", aka the "coercion operator".
For
consumer :#= producer
, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '#' means to ignore flips, always drive from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes: - Connecting two
util.DecoupledIO
's would connectbits
,valid
, ANDready
from producer to consumer (despiteready
being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=- producer
the right-hand-side of the connection, all members will be driving, none will be driven-to
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :#=[S <: Data](producer: Connectable[S])(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "mono-direction connection operator", aka the "coercion operator".
The "mono-direction connection operator", aka the "coercion operator".
For
consumer :#= producer
, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '#' means to ignore flips, always drive from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes: - Connecting two
util.DecoupledIO
's would connectbits
,valid
, ANDready
from producer to consumer (despiteready
being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=- producer
the right-hand-side of the connection, all members will be driving, none will be driven-to
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :#=[S <: Data](lProducer: => S)(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "mono-direction connection operator", aka the "coercion operator".
The "mono-direction connection operator", aka the "coercion operator".
For
consumer :#= producer
, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '#' means to ignore flips, always drive from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes: - Connecting two
util.DecoupledIO
's would connectbits
,valid
, ANDready
from producer to consumer (despiteready
being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit
The "aligned connection operator" between a producer and consumer.
The "aligned connection operator" between a producer and consumer.
For
consumer :<= producer
, each ofconsumer
's leaf members which are aligned with respect toconsumer
are driven from the correspondingproducer
leaf member. Onlyconsumer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectbits
andvalid
from producer to consumer, but leaveready
unconnected
- producer
the right-hand-side of the connection; will always drive leaf connections, and never get driven by leaf connections ("aligned connection")
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<=[S <: Data](producer: Connectable[S])(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "aligned connection operator" between a producer and consumer.
The "aligned connection operator" between a producer and consumer.
For
consumer :<= producer
, each ofconsumer
's leaf members which are aligned with respect toconsumer
are driven from the correspondingproducer
leaf member. Onlyconsumer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectbits
andvalid
from producer to consumer, but leaveready
unconnected
- producer
the right-hand-side of the connection; will always drive leaf connections, and never get driven by leaf connections ("aligned connection")
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<=[S <: Data](lProducer: => S)(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "aligned connection operator" between a producer and consumer.
The "aligned connection operator" between a producer and consumer.
For
consumer :<= producer
, each ofconsumer
's leaf members which are aligned with respect toconsumer
are driven from the correspondingproducer
leaf member. Onlyconsumer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectbits
andvalid
from producer to consumer, but leaveready
unconnected
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<>=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit
The "bi-direction connection operator", aka the "tur-duck-en operator"
The "bi-direction connection operator", aka the "tur-duck-en operator"
For
consumer :<>= producer
, both producer and consumer leafs could be driving or be driven-to. Theconsumer
's members aligned w.r.t.consumer
will be driven by corresponding members ofproducer
; theproducer
's members flipped w.r.t.producer
will be driven by corresponding members ofconsumer
Identical to calling
:<=
and:>=
in sequence (order is irrelevant), e.g.consumer :<= producer
thenconsumer :>= producer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
- An additional type restriction is that all relative orientations of
consumer
andproducer
must match exactly.
Additional notes:
- Connecting two wires of
util.DecoupledIO
chisel type would connectbits
andvalid
from producer to consumer, andready
from consumer to producer. - If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
- "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken;
:<>=
is a:=
stuffed with a<>
- producer
the right-hand-side of the connection
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<>=[S <: Data](producer: Connectable[S])(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "bi-direction connection operator", aka the "tur-duck-en operator"
The "bi-direction connection operator", aka the "tur-duck-en operator"
For
consumer :<>= producer
, both producer and consumer leafs could be driving or be driven-to. Theconsumer
's members aligned w.r.t.consumer
will be driven by corresponding members ofproducer
; theproducer
's members flipped w.r.t.producer
will be driven by corresponding members ofconsumer
Identical to calling
:<=
and:>=
in sequence (order is irrelevant), e.g.consumer :<= producer
thenconsumer :>= producer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
- An additional type restriction is that all relative orientations of
consumer
andproducer
must match exactly.
Additional notes:
- Connecting two wires of
util.DecoupledIO
chisel type would connectbits
andvalid
from producer to consumer, andready
from consumer to producer. - If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
- "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken;
:<>=
is a:=
stuffed with a<>
- producer
the right-hand-side of the connection
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :<>=[S <: Data](lProducer: => S)(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "bi-direction connection operator", aka the "tur-duck-en operator"
The "bi-direction connection operator", aka the "tur-duck-en operator"
For
consumer :<>= producer
, both producer and consumer leafs could be driving or be driven-to. Theconsumer
's members aligned w.r.t.consumer
will be driven by corresponding members ofproducer
; theproducer
's members flipped w.r.t.producer
will be driven by corresponding members ofconsumer
Identical to calling
:<=
and:>=
in sequence (order is irrelevant), e.g.consumer :<= producer
thenconsumer :>= producer
Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '<' means to connect from producer to consumer
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
- An additional type restriction is that all relative orientations of
consumer
andproducer
must match exactly.
Additional notes:
- Connecting two wires of
util.DecoupledIO
chisel type would connectbits
andvalid
from producer to consumer, andready
from consumer to producer. - If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
- "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken;
:<>=
is a:=
stuffed with a<>
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :>=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
For
consumer :>= producer
, each ofproducer
's leaf members which are flipped with respect toproducer
are driven from the corresponding consumer leaf member Onlyproducer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectready
from consumer to producer, but leavebits
andvalid
unconnected
- producer
the right-hand-side of the connection; will always be driven by leaf connections, and never drive leaf connections ("flipped connection")
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :>=[S <: Data](producer: Connectable[S])(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
For
consumer :>= producer
, each ofproducer
's leaf members which are flipped with respect toproducer
are driven from the corresponding consumer leaf member Onlyproducer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectready
from consumer to producer, but leavebits
andvalid
unconnected
- producer
the right-hand-side of the connection; will always be driven by leaf connections, and never drive leaf connections ("flipped connection")
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def :>=[S <: Data](lProducer: => S)(implicit evidence: =:=[T, S], sourceInfo: SourceInfo): Unit
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.
For
consumer :>= producer
, each ofproducer
's leaf members which are flipped with respect toproducer
are driven from the corresponding consumer leaf member Onlyproducer
's leaf/branch alignments influence the connection.Symbol reference:
- ':' is the consumer side
- '=' is the producer side
- '>' means to connect from consumer to producer
The following restrictions apply:
- The Chisel type of consumer and producer must be the "same shape" recursively:
- All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
- All vector types are the same length
- All bundle types have the same member names, but the flips of members can be different between producer and consumer
- The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.
Additional notes:
- Connecting two
util.DecoupledIO
's would connectready
from consumer to producer, but leavebits
andvalid
unconnected
- Implicit
- This member is added by an implicit conversion from Connectable[T] toConnectableOpExtension[T] performed by method ConnectableOpExtension in chisel3.connectable.Connectable.This conversion will take place only if T is a subclass of Data (T <: Data).
- Definition Classes
- ConnectableOpExtension
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def as[S <: Data](implicit ev: <:<[T, S]): Connectable[S]
Static cast to a super type
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val base: T
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def ensuring(cond: (Connectable[T]) => Boolean, msg: => Any): Connectable[T]
- Implicit
- This member is added by an implicit conversion from Connectable[T] toEnsuring[Connectable[T]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: (Connectable[T]) => Boolean): Connectable[T]
- Implicit
- This member is added by an implicit conversion from Connectable[T] toEnsuring[Connectable[T]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean, msg: => Any): Connectable[T]
- Implicit
- This member is added by an implicit conversion from Connectable[T] toEnsuring[Connectable[T]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean): Connectable[T]
- Implicit
- This member is added by an implicit conversion from Connectable[T] toEnsuring[Connectable[T]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exclude(members: (T) => Data*): Connectable[T]
Select members of base to exclude
Select members of base to exclude
- members
functions given the base return a member to exclude
- def exclude: Connectable[T]
Adds base to excludes
- def excludeAs[S <: Data](members: (T) => Data*)(implicit ev: <:<[T, S]): Connectable[S]
Select members of base to exclude and static cast to a new type
Select members of base to exclude and static cast to a new type
- members
functions given the base return a member to exclude
- def excludeEach[S <: Data](pf: PartialFunction[Data, Seq[Data]])(implicit ev: <:<[T, S]): Connectable[S]
Programmatically select members of base to exclude and static cast to a new type
- def excludeProbes: Connectable[T]
Exclude probes
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def notWaivedOrSqueezedOrExcluded: Boolean
True if no members are waived or squeezed or excluded
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def squeeze(members: (T) => Data*): Connectable[T]
Select members of base to squeeze
Select members of base to squeeze
- members
functions given the base return a member to squeeze
- def squeeze: Connectable[T]
Adds base to squeezes
- def squeezeAll: Connectable[T]
Squeeze all members of base
- def squeezeAllAs[S <: Data](implicit ev: <:<[T, S]): Connectable[S]
Squeeze all members of base and upcast to super type
- def squeezeEach[S <: Data](pf: PartialFunction[Data, Seq[Data]]): Connectable[T]
Programmatically select members of base to squeeze
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def unsafe: Connectable[Data]
Connect to/from all fields regardless of Scala type, squeeze if necessary, and don't error if mismatched members
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def waive(members: (T) => Data*): Connectable[T]
Select members of base to waive
Select members of base to waive
- members
functions given the base return a member to waive
- def waiveAll: Connectable[T]
Waive all members of base
- def waiveAllAs[S <: Data](implicit ev: <:<[T, S]): Connectable[S]
Waive all members of base and static cast to a new type
- def waiveAs[S <: Data](members: (T) => Data*)(implicit ev: <:<[T, S]): Connectable[S]
Select members of base to waive and static cast to a new type
Select members of base to waive and static cast to a new type
- members
functions given the base return a member to waive
- def waiveEach[S <: Data](pf: PartialFunction[Data, Seq[Data]])(implicit ev: <:<[T, S]): Connectable[S]
Programmatically select members of base to waive and static cast to a new type
Deprecated Value Members
- def formatted(fmtstr: String): String
- Implicit
- This member is added by an implicit conversion from Connectable[T] toStringFormat[Connectable[T]] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.12.16) Use
formatString.format(value)
instead ofvalue.formatted(formatString)
, or use thef""
string interpolator. In Java 15 and later,formatted
resolves to the new method in String which has reversed parameters.
- def →[B](y: B): (Connectable[T], B)
- Implicit
- This member is added by an implicit conversion from Connectable[T] toArrowAssoc[Connectable[T]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use
->
instead. If you still wish to display it as one character, consider using a font with programming ligatures such as Fira Code.