package experimental
- Alphabetic
- Public
- Protected
Type Members
- sealed trait BitSet extends AnyRef
A Set of
BitPat
represents a set of bit vector with mask. - class BoringUtilsException extends Exception
An exception related to BoringUtils
- trait FlattenInstance extends AnyRef
Flattens an instance of a module
Flattens an instance of a module
trait Internals { this: Module => val io = IO(new Bundle{ val a = Input(Bool()) }) } class Foo extends Module with Internals with FlattenInstance class Bar extends Module with Internals { val baz = Module(new Baz) baz.io.a := io.a } class Baz extends Module with Internals /* The resulting instances will be: - Top - Top.x - Top.y - Top.z - Top.z.baz */ class Top extends Module with Internals { val x = Module(new Foo) // x will be flattened val y = Module(new Bar with FlattenInstance) // y will also be flattened val z = Module(new Bar) // z will not be flattened Seq(x, y, z).map(_.io.a := io.a) }
Example: - case class ForceNameAnnotation(target: IsMember, name: String) extends SingleTargetAnnotation[IsMember] with Product with Serializable
Links the user-specified name to force to, with the signal/instance in the FIRRTL design
Links the user-specified name to force to, with the signal/instance in the FIRRTL design
- target
signal/instance to force the name
- name
name to force it to be
- trait InlineInstance extends AnyRef
Inlines an instance of a module
Inlines an instance of a module
trait Internals { this: Module => val io = IO(new Bundle{ val a = Input(Bool()) }) } class Sub extends Module with Internals trait HasSub { this: Module with Internals => val sub = Module(new Sub) sub.io.a := io.a } /* InlineInstance is mixed directly into Foo's definition. Every instance * of this will be inlined. */ class Foo extends Module with Internals with InlineInstance with HasSub /* Bar will, by default, not be inlined */ class Bar extends Module with Internals with HasSub /* The resulting instances will be: - Top - Top.x$sub - Top.y$sub - Top.z - Top.z.sub */ class Top extends Module with Internals { val x = Module(new Foo) // x will be inlined val y = Module(new Bar with InlineInstance) // y will also be inlined val z = Module(new Bar) // z will not be inlined Seq(x, y, z).map(_.io.a := io.a) }
Example:
Value Members
- object BitSet
- object BoringUtils
Utilities for generating synthesizable cross module references that "bore" through the hierarchy.
Utilities for generating synthesizable cross module references that "bore" through the hierarchy. The underlying cross module connects are handled by FIRRTL's Wiring Transform.
Consider the following example where you want to connect a component in one module to a component in another. Module
Constant
has a wire tied to42
andExpect
will assert unless connected to42
:class Constant extends Module { val io = IO(new Bundle{}) val x = Wire(UInt(6.W)) x := 42.U } class Expect extends Module { val io = IO(new Bundle{}) val y = Wire(UInt(6.W)) y := 0.U // This assertion will fail unless we bore! chisel3.assert(y === 42.U, "y should be 42 in module Expect") }
We can then connect
x
toy
using BoringUtils without modifiying the Chisel IO ofConstant
,Expect
, or modules that may instantiate them. There are two approaches to do this:1. Hierarchical boring using BoringUtils.bore
2. Non-hierarchical boring using BoringUtils.addSink/BoringUtils.addSource
Hierarchical Boring
Hierarchical boring involves connecting one sink instance to another source instance in a parent module. Below, module
Top
contains an instance ofConstant
andExpect
. Using BoringUtils.bore, we can connectconstant.x
toexpect.y
.class Top extends Module { val io = IO(new Bundle{}) val constant = Module(new Constant) val expect = Module(new Expect) BoringUtils.bore(constant.x, Seq(expect.y)) }
Bottom-up boring involves boring a sink in a child instance to the current module, where it can be assigned from. Using BoringUtils.bore, we can connect from
constant.x
tomywire
.class Top extends Module { val io = IO(new Bundle { val foo = UInt(3.W) }) val constant = Module(new Constant) io.foo := BoringUtils.bore(constant.x) }
Non-hierarchical Boring
Non-hierarchical boring involves connections from sources to sinks that cannot see each other. Here,
x
is described as a source and given a name,uniqueId
, andy
is described as a sink with the same name. This is equivalent to the hierarchical boring example above, but requires no modifications toTop
.class Constant extends Module { val io = IO(new Bundle{}) val x = Wire(UInt(6.W)) x := 42.U BoringUtils.addSource(x, "uniqueId") } class Expect extends Module { val io = IO(new Bundle{}) val y = Wire(UInt(6.W)) y := 0.U // This assertion will fail unless we bore! chisel3.assert(y === 42.U, "y should be 42 in module Expect") BoringUtils.addSink(y, "uniqueId") } class Top extends Module { val io = IO(new Bundle{}) val constant = Module(new Constant) val expect = Module(new Expect) }
Comments
Both hierarchical and non-hierarchical boring emit FIRRTL annotations that describe sources and sinks. These are matched by a
name
key that indicates they should be wired together. Hierarchical boring safely generates this name automatically. Non-hierarchical boring unsafely relies on user input to generate this name. Use of non-hierarchical naming may result in naming conflicts that the user must handle.The automatic generation of hierarchical names relies on a global, mutable namespace. This is currently persistent across circuit elaborations.
- object forceName
- object getAnnotations
- object loadMemoryFromFile
loadMemoryFromFile is an annotation generator that helps with loading a memory from a text file as a bind module.
loadMemoryFromFile is an annotation generator that helps with loading a memory from a text file as a bind module. This relies on Verilator and Verilog's
$readmemh
or$readmemb
.This annotation, when a FIRRTL compiler runs will add Verilog directives to enable the specified memories to be initialized from files.
Example module
Consider a simple Module containing a memory:
import chisel3._ class UsesMem(memoryDepth: Int, memoryType: Data) extends Module { val io = IO(new Bundle { val address = Input(UInt(memoryType.getWidth.W)) val value = Output(memoryType) }) val memory = Mem(memoryDepth, memoryType) io.value := memory(io.address) }
Above module with annotation
To load this memory from the file
/workspace/workdir/mem1.hex.txt
just add an import and annotate the memory:import chisel3._ import chisel3.util.experimental.loadMemoryFromFile // <<-- new import here class UsesMem(memoryDepth: Int, memoryType: Data) extends Module { val io = IO(new Bundle { val address = Input(UInt(memoryType.getWidth.W)) val value = Output(memoryType) }) val memory = Mem(memoryDepth, memoryType) io.value := memory(io.address) loadMemoryFromFile(memory, "/workspace/workdir/mem1.hex.txt") // <<-- Note the annotation here }
Example file format
A memory file should consist of ASCII text in either hex or binary format. The following example shows such a file formatted to use hex:
0 7 d 15
A binary file can be similarly constructed.
- See also
LoadMemoryFromFileSpec.scala in the test suite for additional examples.
Chisel3 Wiki entry on "Loading Memories in Simulation"
- object loadMemoryFromFileInline
loadMemoryFromFileInline is an annotation generator that helps with loading a memory from a text file inlined in the Verilog module.
loadMemoryFromFileInline is an annotation generator that helps with loading a memory from a text file inlined in the Verilog module. This relies on Verilator and Verilog's
$readmemh
or$readmemb
.This annotation, when the FIRRTL compiler runs, triggers the
MemoryFileInlineAnnotation
that will add Verilog directives inlined to the module enabling the specified memories to be initialized from files. The module supports bothhex
andbin
files by passing the appropriateMemoryLoadFileType.FileType
argument with
MemoryLoadFileType.BinaryMemoryLoadFileType.Hex
or. Hex is the default.
Example module
Consider a simple Module containing a memory:
import chisel3._ class UsesMem(memoryDepth: Int, memoryType: Data) extends Module { val io = IO(new Bundle { val address = Input(UInt(memoryType.getWidth.W)) val value = Output(memoryType) }) val memory = Mem(memoryDepth, memoryType) io.value := memory(io.address) }
Above module with annotation
To load this memory from the file
/workspace/workdir/mem1.hex.txt
just add an import and annotate the memory:import chisel3._ import chisel3.util.experimental.loadMemoryFromFileInline // <<-- new import here class UsesMem(memoryDepth: Int, memoryType: Data) extends Module { val io = IO(new Bundle { val address = Input(UInt(memoryType.getWidth.W)) val value = Output(memoryType) }) val memory = Mem(memoryDepth, memoryType) io.value := memory(io.address) loadMemoryFromFileInline(memory, "/workspace/workdir/mem1.hex.txt") // <<-- Note the annotation here }
Example file format
A memory file should consist of ASCII text in either hex or binary format. The following example shows such a file formatted to use hex:
0 7 d 15
A binary file can be similarly constructed. Chisel does not validate the file format or existence. It is supposed to be in a path accessible by the synthesis tool together with the generated Verilog.
- See also
Chisel3 Wiki entry on "Loading Memories in Simulation"